ON DERIVED FUNCTORS OF LIMIT(1)

RY

DANA MAY LATCH

ABSTRACT. If $\mathfrak A$ is a cocomplete category with enough projectives and $\mathfrak C$ is a 1-finite small category, then there is a spectral sequence which shows that the cardinality of $\mathfrak C$ and colimits over finite initial subcategories $\mathfrak C'$ of $\mathfrak C$ are determining factors for computation of derived functors of colimit. Applying a recent result of Mitchell to this spectral sequence we show that if the cardinality of $\mathfrak C$ is at most $\mathfrak K_n$, and the flat dimension of Δ^*Z (constant diagram of type $\mathfrak C^{op}$ with value Z) is k, then the derived functors of $\lim_{\mathfrak C}:\mathfrak Ab^{\mathfrak C}\to\mathfrak Ab$ vanish above dimension n+1+k.

Introduction. The purpose of the paper is to study derived functors of limit. This topic was first considered by Milnor [7], Yeh [17], and Roos [14]. The results of Roos, Noebeling [11], André [1], and Laudal [6] all show that derived functors of colimit can be interpreted as the homology of a simplicial complex.

This paper introduces a spectral sequence, which isolates the cardinality of C and colimits over finitely generated initial subcategories C' of C as determining factors for the vanishing of derived functors of colimit (dually limit).

If \mathfrak{A} is an abelian category, Stauffer [16] shows that there exists an AB5 category $D(\mathfrak{A})$, called the directed completion of \mathfrak{A} , and an exact, Ext-preserving, projective preserving embedding $J:\mathfrak{A}\to D(\mathfrak{A})$. $D(\mathfrak{A})$ is similar to the cocontinuous extension of \mathfrak{A} studied by Hilton [4] and to Grothendieck's category of Pro-objects of \mathfrak{A} [3].

If $\mathfrak A$ is cocomplete, we get a coreflection $U:D(\mathfrak A)\to \mathfrak A$ of $J:\mathfrak A\to D(\mathfrak A)$. These two functors together give rise to a factorization

$$\operatorname{colim}: \mathfrak{A}^{\mathsf{C}} \longrightarrow \mathfrak{A} \quad \operatorname{into} \quad \mathfrak{A}^{\mathsf{C}} \xrightarrow{\operatorname{colim}_{\mathsf{C}} J^{\mathsf{C}}} D(\mathfrak{A}) \xrightarrow{U} \mathfrak{A}.$$

When C is a 1-finite small category and ${\mathfrak A}$ a cocomplete category with pro-

Presented to the Society, January 25, 1973; received by the editors March 6, 1972. AMS (MOS) subject classifications (1970). Primary 18E25; Secondary 18E10, 18E20. Key words and phrases. Derived functors of limit, downward finite small category,

Key words and phrases. Derived functors of limit, downward finite small category, directed completion of a category &, homological dimension, flat dimension.

⁽¹⁾ This paper forms part of the author's doctoral dissertation written at CUNY under the direction of Professor Alex Heller.

jectives, we apply a well-known technique of Grothendieck [2] to the above factorization of $\operatorname{colim}_{\mathbf{C}}: \mathfrak{C}^{\mathbf{C}} \to \mathfrak{C}$. This results in a first quadrant spectral sequence

$$E^{2} = (L_{*}U) \left(L_{*} \operatorname{colim}_{\mathbf{C}} \right) (J^{\mathbf{C}}(\overline{A})) \simeq L_{*} \operatorname{colim}_{\mathbf{C}' \in \mathfrak{F}(\mathbf{C})} \left(L_{*} \operatorname{colim}_{\mathbf{C}'} \right) (\overline{A} | \mathbf{C}')$$

which converges to $(L_* \operatorname{colim}_{\mathbb{C}})(\overline{A})$, where \overline{A} is a diagram in \mathfrak{C} of type \mathbb{C} and $\mathcal{F}(\mathbb{C})$ the \downarrow -finite directed ordered set of all finite initial subcategories \mathbb{C}' .

Many generalizations of ring theoretic results prove useful in applying the spectral sequence. Using a recent result of Mitchell [10], we show that if C is a \downarrow -finite small category of cardinality at most \aleph_n and

$$k = \sup\{m | 0 \neq L_m \operatorname{colim}_{\mathbb{C}} : \mathfrak{A}b^{\mathbb{C}} \to \mathfrak{A}b\},$$

then $R^r \lim_{C^{op}} : \mathcal{C}b^{C^{op}} \to \mathcal{C}b$ vanishes for r > n+1+k.

I wish to express my appreciation to Alex Heller for his encouragement and aid. Also, I thank Barry Mitchell for many enlightening conversations about this problem.

1. Preliminaries. If C is a small category, let |C| denote the set of objects of C and C(p,q) the set of morphisms from p to q. If α is a morphism of C, then $d\alpha$ and $r\alpha$ will denote the domain and range of α , respectively. Let $\|C\|$ represent the cardinality of the set C. Then C is said to be an n-category if $\|C\| \le \aleph_n$ for n > 0, and a finite category if $\|C\| < \aleph_0$.

A subcategory C' of C, denoted by $C' \leq C$, will be called *initial* if $\alpha \in C$ with $r\alpha \in |C'|$ implies $\alpha \in C'$ (and consequently $d\alpha \in |C'|$). It is clear that any initial subcategory is full. Let C(p) denote the smallest initial subcategory containing p. Then if $C(p,q) \neq \emptyset$, it is clear that $C(p) \leq C(q)$. Also, C' initial implies $C' = \bigcup_{p' \in |C'|} C(p')$ and $C(p') \leq C'$ for every $p' \in |C'|$.

Definition 1.1. A small category C is said to be downward finite, \downarrow -finite, if C(p) is finite for every $p \in |C|$.

Let $\mathcal{F}(C)$ represent the collection of all finitely-generated initial subcategories C' of C. If C is 1-finite, then clearly $\mathcal{F}(C)$ satisfies the following conditions:

- (i) $\mathcal{F}(C)$ is a directed ordered set under the natural ordering of inclusion of categories, with initial element the empty subcategory \emptyset .
- (ii) $\mathcal{F}(C)$ is \downarrow -finite, i.e. any finitely-generated initial subcategory has a finite number of initial subcategories.
 - (iii) If C is a *n*-category, then so is $\mathcal{F}(C)$, i.e. $\|C\| \leq \aleph_n$ implies $\|\mathcal{F}(C\| \leq \aleph_n)$
 - (iv) For every $p \in |C|$, $C(p) \in \mathcal{F}(C)$.

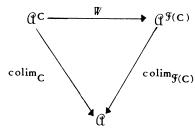
If \mathfrak{A} is an abelian category, then $\mathfrak{A}^{\mathbb{C}}$ will denote the abelian category of all diagrams of type \mathbb{C} , i.e. covariant functors $\overline{A}:\mathbb{C}\to\mathfrak{A}$, with $\mathfrak{A}^{\mathbb{C}}(\overline{A},\overline{B})$ the abelian group of natural transformations from \overline{A} to \overline{B} . In particular, let $\Delta A:\mathbb{C}\to\mathfrak{A}$

represent the constant functor with value A and $\Delta^*A: \mathbb{C}^{op} \to \mathcal{C}$ the dual diagram. If $F: \mathcal{C} \to \mathcal{B}$ is any functor, let $F^{\mathbf{C}}: \mathcal{C}^{\mathbf{C}} \to \mathcal{B}^{\mathbf{C}}$ denote the canonical functor given by $F^{\mathbf{C}}(\overline{A})_{p} = F(A_{p}).$

It is well known [8] that if a cocomplete abelian category with enough projectives and/or injectives, then so is $\mathfrak{A}^{\mathbf{C}}$. For example, if $\mathfrak{A} = \mathfrak{A}b$, the category of abelian groups, then $\mathfrak{A}_b^{\mathsf{C}}$ is an AB5 category with enough projectives and injectives.

When \mathcal{C} is cocomplete, there is a functor $W: \mathcal{C}^C \to \mathcal{C}^{\mathfrak{F}(C)}$ defined by $(W\overline{A})_{C'}$ = $\operatorname{colim}_{\mathbf{C'}} \overline{A} \mid \mathbf{C'} \text{ with } (\overline{WA})_{\mathbf{C''}}^{\mathbf{C'}} : (W\overline{A})_{\mathbf{C''}} \to (W\overline{A})_{\mathbf{C''}}^{\mathbf{C''}} \text{ the canonical map of colimits in-}$ duced by the inclusion $C' \leq C''$.

Lemma 1.2. If \mathfrak{A} is a cocomplete abelian category and \mathfrak{C} is a 1-finite small category, then



commutes up to an isomorphism.

This follows easily from the definitions.

Furthermore, when lpha cocomplete, there are two associated functors between \mathfrak{A} and $\mathfrak{A}^{\mathsf{C}}$ for each $p \in |\mathsf{C}|$. The first is the canonical evaluation functor ev_p : $\mathfrak{A}^{\mathbf{C}} \to \mathfrak{A}$ defined by $\operatorname{ev}_p(\overline{A}) = A_p$, where $\overline{A} \in \mathfrak{A}^{\mathbf{C}}$. It is exact since exactness in $\mathfrak{A}^{\mathbf{C}}$ is "pointwise". The second functor is $E_p : \mathfrak{A} \to \mathfrak{A}^{\mathbf{C}}$ which is constructed in the following way. For each $X \in \mathbb{C}$ and $q \in |C|$, let $(E_p X)_q = \coprod_{p \to q} X$, and let $(E_pX)(\beta): (E_pX)_q \to (E_pX)_{q'}, \ \beta: q \to q \ \text{in } \mathbb{C}, \ \text{be the canonical morphism such}$ that $(E_pX)(\beta)i_\alpha=i_{\beta\cdot\alpha}, \ i_\alpha: X \to \coprod_{p\to q} X \ \text{being the natural inclusion into the coproduct.}$ Similarly, for each morphism $f: X \to Y \ \text{in } \mathbb{C}$, there is a natural transformation $(E_{b}f): (E_{b}X) \to (E_{b}Y)$ defined by $(E_{b}f)i_{\alpha} = i_{\alpha} \cdot f$.

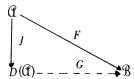
Proposition 1.3. If Ct is cocomplete and abelian, then

- (i) $E_p: \mathfrak{A} \to \mathfrak{A}^C$ is the coadjoint of $\operatorname{ev}_p: \mathfrak{A}^C \to \mathfrak{A}$. (ii) $E_p: \mathfrak{A}^C \to \mathfrak{A}$ is right exact and also preserves projectives (since $\operatorname{ev}_p: \mathfrak{A}^C \to \mathfrak{A}$). $\mathfrak{A}^{\mathbf{C}} \to \mathfrak{A}$ is exact).
- (iii) When A has enough projectives AC has enough canonical projectives of the form $\coprod_{q \in |C|} E_q P_q$, P_q projective in \mathfrak{A} . If $\overline{A} \in \mathfrak{A}^{\overline{C}}$ and for each $q \in |C|$, $P_q \to A_q$ is an epimorphism with P_q projective, then $\coprod_{q \in [C]} E_q P_q \to \overline{A}$ is an epimorphism in CC.

2. $D(\mathfrak{C})$ and the spectral sequence.

Theorem 2.1. Associated with any abelian category \mathfrak{A} there is an AB5 category $D(\mathfrak{A})$ (called the directed completion of \mathfrak{A}), and a natural embedding $J:\mathfrak{A}\to D(\mathfrak{A})$ such that $J:\mathfrak{A}\to D(\mathfrak{A})$ is exact, full, projective-preserving and Ext-preserving (i.e. $Ext^*(J(A), J(B)) \simeq Ext^*(A, B)$). Furthermore, $J:\mathfrak{A}\to D(\mathfrak{A})$ and $D(\mathfrak{A})$ together satisfy the following universal extension property:

(i) If $\mathcal B$ is any cocomplete abelian category and $F:\mathcal C\to\mathcal B$ is right exact, then there exists a unique cocontinuous (i.e. colimit-preserving) functor $G:D(\mathcal C)\to\mathcal B$ such that



commutes up to isomorphism.

(ii) If $\mathcal B$ is AB5 and $F:\mathcal C\to\mathcal B$ is exact, then $G:D(\mathcal C)\to\mathcal B$ is cocontinuous and exact.

For the details of the proof see Stauffer [16].

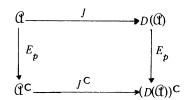
In particular, when \mathcal{C} itself is cocomplete there exists a unique cocontinuous (and consequently right exact) functor $U:D(\mathcal{C}) \to \mathcal{C}$ such that $U \cdot J \simeq \mathrm{id}_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$. Thus \mathcal{C} can be considered as a coreflective subcategory of $D(\mathcal{C})$. The next proposition follows easily from the facts that $U:D(\mathcal{C}) \to \mathcal{C}$ is cocontinuous and $U \cdot J \simeq \mathrm{id}_{\mathcal{C}}$.

Proposition 2.2. If C is any small category and C is cocomplete and abelian, then $U(\operatorname{colim}_{\mathbf{C}} J^{\mathbf{C}}(\overline{A})) \simeq \operatorname{colim}_{\mathbf{C}}(\overline{A})$ for all $\overline{A} \in C^{\mathbf{C}}$.

By Proposition 2.2, $\operatorname{colim}_{\mathbf{C}}: \mathbb{C}^{\mathbf{C}} \to \mathbb{C}$ is factored into $\operatorname{colim}_{\mathbf{C}}: \mathbb{C}^{\mathbf{C}} \to D(\mathbb{C})$ and $U:D(\mathbb{C}) \to \mathbb{C}$. This factorization, for \mathbb{C} a \downarrow -finite small category and a cocomplete abelian category with enough projectives, will yield the spectral sequence which is the major tool of this paper. As a first step, we prove a series of lemmas to show that $J^{\mathbf{C}}: \mathbb{C}^{\mathbf{C}} \to D(\mathbb{C})^{\mathbf{C}}$ preserve canonical projectives.

For the remainder of this section, α will be assumed to be a cocomplete abelian category with enough projectives.

Lemma 2.3. For every $p \in |C|$, the following diagram commutes.



Proof. It suffices to show that, for each $q \in |C|$, $J^C(E_pX)_q = E_p(J(X))_q$. By definition, $J^C(E_pX)_q = J(E_pX)_q = J(\coprod_{p \stackrel{\alpha}{=} q} X)$. Since C is \downarrow -finite, $(E_pX)_q = \coprod_{p \stackrel{\alpha}{=} q} X$ is a finite coproduct. $J: C \rightarrow D(C)$ additive insures that $J(\coprod_{p \stackrel{\alpha}{=} q} X) = \coprod_{p \stackrel{\alpha}{=} q} J(X) = E_p(J(X))_q$, and the lemma follows.

Using 1-finiteness of C, a proof similar to the above yields the next lemma.

Lemma 2.4. Let C be any \downarrow -finite small category, $\{X_p\}_{p \in |C|}$ any collection of objects in G. Then

$$J^{\mathbf{C}}\left(\prod_{p \in |\mathbf{C}|} E_{p} X_{p}\right) = \prod_{p \in \mathbf{C}} E_{p}(J(X_{p})).$$

Corollary 2.5. $I^{C}: \mathcal{C}^{C} \to \mathcal{D}(\mathcal{C})^{C}$ preserves canonical projectives.

Proof. That $J^{\mathbf{C}}: \mathfrak{A}^{\mathbf{C}} \to D(\mathfrak{A})^{\mathbf{C}}$ preserves projectives follows immediately from Lemma 2.4, the definition of a canonical projective (1.3) and the fact that both $E_{\mathbf{C}}: \mathfrak{A} \to \mathfrak{A}^{\mathbf{C}}$ and $J: \mathfrak{A} \to D(\mathfrak{A})$ preserve projectives.

Theorem 2.6 (Spectral sequence). If C is a \downarrow -finite ordered set, A is cocomplete with projectives, and $\overline{A} \in A^C$, then there is a first quadrant spectral sequence

$$E_{pq}^2 = (L_p U) \left(L_q \underset{C}{\text{colim}} \right) (J^{C}(\overline{A}))$$

converging to $(L_{p+q} \operatorname{colim}_{\mathbf{C}})(\overline{A})$.

Proof. Both $\operatorname{colim}_{\mathbf{C}}: D(\mathfrak{C})^{\mathbf{C}} \to D(\mathfrak{C})$ and $J^{\mathbf{C}}: \mathfrak{C}^{\mathbf{C}} \to D(\mathfrak{C})^{\mathbf{C}}$ (by Corollary 2.5) preserve projectives. Hence, the hypotheses of the "Grothendieck Two Functor Theorem" [2] are satisfied since $U \circ \operatorname{colim}_{\mathbf{C}} J^{\mathbf{C}} \simeq \operatorname{colim}_{\mathbf{C}}: \mathfrak{C}^{\mathbf{C}} \to \mathfrak{C}$, $U:D(\mathfrak{C}) \to \mathfrak{C}$ is right exact and $\operatorname{colim}_{\mathbf{C}} J^{\mathbf{C}}: \mathfrak{C}^{\mathbf{C}} \to D(\mathfrak{C})$ preserves projectives. Applying this theorem of Grothendieck yields a spectral sequence with $E_{pq}^2 \simeq (L_p U)(L_q \operatorname{colim}_{\mathbf{C}} J^{\mathbf{C}})(\overline{A})$ converging to $(L_{p+q} \operatorname{colim}_{\mathbf{C}})(\overline{A})$. But since $J^{\mathbf{C}}: \mathfrak{C}^{\mathbf{C}} \to D(\mathfrak{C})^{\mathbf{C}}$ is both exact and projective-preserving,

$$\left(L_{p} \underset{C}{\operatorname{colim}} J^{C}\right)(\overline{A}) \simeq \left(L_{p} \underset{C}{\operatorname{colim}}\right)(J^{C}(\overline{A})),$$

giving the required form.

Also, $D(\mathfrak{A})$, AB5, and $J^{\mathbb{C}}: \mathfrak{A}^{\mathbb{C}} \to D(\mathfrak{A})^{\mathbb{C}}$ exact yield the next corollary.

Corollary 2.7. If Λ is a \downarrow -finite directed ordered set, and $\overline{A} \in \mathfrak{A}^{\Lambda}$, then $(L_p U)(\operatorname{colim}_{\Lambda} f^{\Lambda}(\overline{A})) \simeq (L_p \operatorname{colim}_{\Lambda})(\overline{A})$ for every p > 0.

Recall that $W: \mathfrak{A}^{\mathbf{C}} \to \mathfrak{A}^{\mathfrak{F}(\mathbf{C})}$ is the functor defined by $(W\overline{A})_{\mathbf{C}'} = \operatorname{colim}_{\mathbf{C}'} \overline{A} \mid \mathbf{C}'$, where $\mathcal{F}(\mathbf{C})$ is the \downarrow -finite directed ordered set consisting of all finitely-generated initial subcategories \mathbf{C}' .

Lemma 2.8. If C is a 1-finite small category, then

$$\left(L_{p} \underset{C}{\operatorname{colim}} \ J^{C}\right)(\overline{A}) \simeq \underset{\mathfrak{F}(C)}{\operatorname{colim}} \ J^{\mathfrak{F}(C)}(L_{p}W)(\overline{A})$$

for every $\overline{A} \in \mathfrak{A}^{\mathsf{C}}$.

Proof. Since $J: \mathcal{C} \to D(\mathcal{C})$ is exact, it commutes with finite colimits, and therefore $J((W\overline{A})_{\mathbf{C'}}) \simeq W(J^{\mathbf{C}}(A))_{\mathbf{C'}}$, for every $C' \in \mathcal{F}(C)$. But by Lemma 1.2, $\operatorname{colim}_{\mathbf{C}} J^{\mathbf{C}}(\overline{A}) \simeq \operatorname{colim}_{\mathcal{F}(\mathbf{C})} W(J^{\mathbf{C}}(A))$, and thus $\operatorname{colim}_{\mathbf{C}} J^{\mathbf{C}}(\overline{A}) \simeq \operatorname{colim}_{\mathbf{C'} \in \mathcal{F}(\mathbf{C})} J(W\overline{A})_{\mathbf{C'}} = \operatorname{colim}_{\mathcal{F}(\mathbf{C})} J^{\mathcal{F}(\mathbf{C})}(W\overline{A})$. Since $\mathcal{F}(C)$ is a 1-finite directed ordered set and $D(\mathcal{C})$ is AB5, $\operatorname{colim}_{\mathcal{F}(\mathbf{C})} J^{\mathcal{F}(\mathbf{C})} : \mathcal{C}^{\mathcal{F}(\mathbf{C})} \to D(\mathcal{C})$ is exact and therefore commutes with homology. Consequently, $(L_* \operatorname{colim}_{\mathbf{C}}) J^{\mathbf{C}}(\overline{A}) \simeq \operatorname{colim}_{\mathcal{F}(\mathbf{C})} J^{\mathcal{F}(\mathbf{C})} L_*(W\overline{A})$.

Combining Lemma 2.8, Theorem 2.6, and Corollary 2.7 yields several equivalent forms for the spectral sequence.

Theorem 2.9. If \mathfrak{A} is cocomplete with enough projectives, \mathfrak{C} a \natural -finite small category, and $\overline{A} \in \mathfrak{A}^{\mathbf{C}}$, then there is a first quadrant spectral sequence

$$\begin{split} E_{pq}^2 & \simeq (L_p U) \bigg(L_q \, \underset{\mathbf{C}}{\operatorname{colim}} \bigg) J^{\mathbf{C}}(\overline{A}) \, \simeq (L_p U) \left(\underset{\mathfrak{F}(\mathbf{C})}{\operatorname{colim}} \, J^{\mathfrak{F}(\mathbf{C})}(L_q W(\overline{A})) \right) \\ & \simeq \bigg(L_p \, \underset{\mathfrak{F}(\mathbf{C})}{\operatorname{colim}} \bigg) (L_q W) (\overline{A}) \equiv \bigg(L_p \, \underset{\mathbf{C}' \in \mathfrak{F}(\mathbf{C})}{\operatorname{colim}} \bigg) \bigg(L_q \, \underset{\mathbf{C}'}{\operatorname{colim}} \bigg) (\overline{A} \, | \, \mathbf{C}') \end{split}$$

converging to $(L_{n+a} \operatorname{colim}_{\mathbf{C}})(\overline{A})$.

Thus from the factorization of $\operatorname{colim}_{\mathbf{C}}: \mathbb{C}^{\mathbf{C}} \to \mathbb{C}$ into $\operatorname{colim}_{\mathbf{C}} f^{\mathbf{C}}: \mathbb{C}^{\mathbf{C}} \to D(\mathbb{C})$ and $U:D(\mathbb{C}) \to \mathbb{C}$, we get a spectral sequence which involves derived functors of colimit over a directed ordered set, namely, $\mathcal{F}(\mathbf{C})$.

3. Applications. In this section, we apply a recent result of Mitchell [10] to the spectral sequence. This shows the cardinality of C is related to the vanishing of higher derived functors of $\operatorname{colim}_C: C^C \to C$, C an AB4 category and C a 1-finite small category. The method will employ generalizations of dimension theory for rings developed by Mitchell in Rings with several objects [9].

If $\overline{A} \in (C, then the homological (projective) dimension of <math>\overline{A}$, denoted $\operatorname{hd}_{\overline{C}} \overline{A}$, is defined to be $\sup\{k \mid \operatorname{Ext}_{\overline{C}}^k(\overline{A}, \underline{\ }) \neq 0\}$; or equivalently, to be the smallest integer for which there is a projective resolution

$$0 \longrightarrow \overline{P}_{n} \longrightarrow \cdots \longrightarrow \overline{P}_{0} \longrightarrow \overline{A} \longrightarrow 0$$

when C is cocomplete with projectives.

Proposition 3.1.
$$\operatorname{hd}_{\mathbf{C}} \Delta Z = \sup\{k | 0 \neq R^k \lim_{\mathbf{C}} : \mathfrak{A}b^{\mathbf{C}} \to \mathfrak{A}b\}.$$

Proof. Let $\Delta: \mathcal{C}b \to \mathcal{C}b^{\mathbf{C}}$ be the full exact embedding which assigns to each $G \in \mathcal{C}b$ the constant diagram ΔG . By definition, $\Delta: \mathcal{C}b \to \mathcal{C}b^{\mathbf{C}}$ is the coadjoint of $\lim_{\mathbf{C}} : \mathcal{C}b^{\mathbf{C}} \to \mathcal{C}b$ and therefore $\mathcal{C}b^{\mathbf{C}}(\Delta Z, \overline{A}) \simeq \mathcal{C}b(Z, \lim_{\mathbf{C}} \overline{A}) \simeq \lim_{\mathbf{C}} \overline{A}$. Taking derived functors gives the result.

If \mathfrak{A} is any cocomplete category and \mathfrak{C} is any small category, there exists a covariant additive cocontinuous (colimit-preserving) bifunctor $\otimes_{\mathfrak{C}}: \mathfrak{A}b^{\mathfrak{C}^{op}} \times \mathfrak{A}^{\mathfrak{C}} \to \mathfrak{A}$ (whose value on the pair (M, F) is denoted by $M \otimes_{\mathfrak{C}} F$), such that for every $M \in \mathfrak{A}b^{\mathfrak{C}^{op}}$, $F \in \mathfrak{A}^{\mathfrak{C}}$, and $X \in \mathfrak{A}$, $\mathfrak{A}b^{\mathfrak{C}^{op}}(M, \mathfrak{A}(F, X)) \simeq \mathfrak{A}(M \otimes_{\mathfrak{C}} F, X)$ (where $\mathfrak{A}(F, X): \mathfrak{C}^{op} \to \mathfrak{A}b$ is given by $\mathfrak{A}(F, X)_p = \mathfrak{A}(F_p, X)$). Define $\operatorname{Tor}^{\mathfrak{C}}_*(M, F) \equiv H_*(P \otimes_{\mathfrak{C}} F)$, where P is a projective resolution for M. From [12], we know that when \mathfrak{A} is AB4 and when M has free values (for example $M = \Delta^* Z$), $\operatorname{Tor}^{\mathfrak{C}}_*(M, L)$ is the sequence of left satellites (left derived functors when \mathfrak{A} has enough projectives) of $M \otimes_{\mathfrak{C}} - \mathfrak{A}$.

Lemma 3.2. If \mathfrak{A} is AB4, then $\operatorname{Tor}^{\mathbf{C}}_*(\Delta^*Z,_):\mathfrak{A}^{\mathbf{C}} \to \mathfrak{A}$ and $L_*\operatorname{colim}_{\mathbf{C}}:\mathfrak{A}^{\mathbf{C}} \to \mathfrak{A}$ are isomorphic.

Proof. If $F \in \mathcal{C}^{\mathbf{C}}$ and $X \in \mathcal{C}$, then by definitions of $\mathrm{colim}_{\mathbf{C}} : \mathcal{C}^{\mathbf{C}} \to \mathcal{C}$ and $\mathrm{lim}_{\mathbf{C}^{\mathrm{op}}} : \mathcal{C}^{\mathbf{C}} \to \mathcal{C}^{\mathbf{C}}$,

$$\mathfrak{A}(\Delta^* Z \otimes_{\mathsf{C}} F, X) \simeq \mathfrak{A}b^{\mathsf{C}^{\mathsf{op}}}(\Delta^* Z, \mathfrak{A}(F, X)) \simeq \mathfrak{A}b\left(Z, \lim_{\mathsf{C}^{\mathsf{op}}} \mathfrak{A}(F, X)\right)$$
$$\simeq \lim_{\mathsf{C}^{\mathsf{op}}} \mathfrak{A}(F, X) \simeq \mathfrak{A}\left(\min_{\mathsf{C}} F, X\right).$$

By Yoneda, this composite natural equivalence must come from a natural equivalence. Hence

$$\Delta^* Z \otimes_{\mathbf{C}} F \simeq \underset{\mathbf{C}}{\operatorname{colim}} F \text{ and } \Delta^* Z \otimes_{\mathbf{C}_-} \simeq \underset{\mathbf{C}}{\operatorname{colim}} : \mathfrak{C}^{\mathbf{C}} \longrightarrow \mathfrak{C}.$$

Since \mathcal{C} is AB4, $L_* \operatorname{colim}_{\mathbf{C}} \simeq \operatorname{Tor}_*^{\mathbf{C}}(\Delta^*Z, _) \colon \mathcal{C}^{\mathbf{C}} \to \mathcal{C}$.

If $\mathcal{C} = \mathcal{C}b$, we say the weak (or flat) dimension of $M \in \mathcal{C}b^{C^{op}}$, denoted $\mathrm{wd}_{\mathbf{C}}M$, is the $\sup\{k|0 \neq \mathrm{Tor}_k^{\mathbf{C}}(M,_): \mathcal{C}b^{\mathbf{C}} \to \mathcal{C}b\}$. Thus by Lemma 3.2, $\mathrm{wd}_{\mathbf{C}}\Delta^*Z = \sup\{k|0 \neq L_k \operatorname{colim}_{\mathbf{C}}: \mathcal{C}b^{\mathbf{C}} \to \mathcal{C}b\}$. Now when \mathcal{C} is AB5, we can use flat resolutions of M to compute $\mathrm{Tor}(M,F)$. This yields the second part of the following (see [9]).

Corollary 3.3. (i) If \mathcal{C} is AB4 and $\operatorname{hd}_{C^{op}}\Delta^*Z = r$, then $0 = L_k \operatorname{colim}_{C}: \mathcal{C} \to \mathcal{C}$ for every k > r.

(ii) If \mathfrak{A} is AB5 and $\operatorname{wd}_{\mathbf{C}}\Delta^*Z = r$, then $0 = L_k \operatorname{colim}_{\mathbf{C}} : \mathfrak{A}^{\mathbf{C}} \to \mathfrak{A}$ for every k > r.

Using other generalizations of ring theoretic results of Osofsky [13], Mitchell [10] proves the next result.

Theorem 3.4. Let \aleph_n be the smallest cardinal number of a cofinal subset of the directed (upward) ordered set Λ (-1 $\leq n \leq \infty$). Then $\operatorname{hd}_{\Lambda^{\mathrm{OP}}} \Delta^* Z = n + 1$.

This and the above corollary immediately imply that L_p colim_{Λ}: $\mathcal{C}^{\Lambda} \to \mathcal{C}$ vanish for p above n+1 whenever \mathcal{C} is AB4, e.g. $\mathcal{C} = \mathcal{C}b$.

Using these preliminary results, we now consider the spectral sequence.

Theorem 3.5. Suppose \mathfrak{A} is AB4 category with projectives, and \mathfrak{C} is small 1-finite n-category with $\operatorname{wd}_{\mathfrak{C}}\Delta^*Z = k$. Then $L_r \operatorname{colim}_{\mathfrak{C}}: \mathfrak{A}^{\mathfrak{C}} \to \mathfrak{A}$ vanishes whenever r > n+1+k.

Proof. By Theorem 2.9, there exists a first quadrant spectral sequence

$$E_{pq}^{2} = (L_{p}U)\left(L_{q}\operatorname{colim}_{\mathbf{C}}\right)(J^{\mathbf{C}}(\overline{A})) \simeq \left(L_{p}\operatorname{colim}_{\mathfrak{F}(\mathbf{C})}\right)(L_{q}W)(\overline{A})$$

converging to $(L_{p+q} \operatorname{colim}_{\mathbf{C}})(\overline{A})$ for every $\overline{A} \in \mathbb{C}^{\mathbf{C}}$. We first hold p constant. Since $\mathfrak{D}(\mathbb{C})$ is AB5, Corollary 3.3(ii) and $\operatorname{wd}_{\mathbf{C}} \Delta^* Z = k$ insure that $(L_p U) \cdot (L_q \operatorname{colim}_{\mathbf{C}})(J^{\mathbf{C}}(\overline{A}))$ is zero for q > k. Next, let q be held constant. C an n-category implies $\mathcal{F}(C)$, the directed set of all finite initial subcategories, is also a n-category, i.e. $\|\mathcal{F}(C)\| < \aleph_n$. Therefore, by Proposition 3.4, $\operatorname{hd}_{\mathcal{F}(\mathbf{C})^{\mathrm{Op}}} \Delta^* Z = n+1$ and $(L_p \operatorname{colim}_{\mathcal{F}(\mathbf{C})})(L_q W)(\overline{A}) = 0$ for p > n+1. Combining these together yields $(L_p \operatorname{colim}_{\mathbf{C}})(\overline{A}) = 0$ for r > n+1+k.

The dual statement is the following.

Theorem 3.6. If \mathfrak{A} is $AB4^*$ with injectives and \mathfrak{C} is a \downarrow -finite small n-category with $\operatorname{wd}_{\mathbf{C}}\Delta^*Z = k$, then $R' \lim_{\mathbf{C} \to \mathbf{C}} : \mathfrak{A}^{\mathbf{C} \to \mathbf{C}} \to \mathfrak{A}$ is zero for r > n+1+k.

In the case when $\hat{\mathbf{G}} = \hat{\mathbf{G}}b$, the following corollary holds.

Corollary 3.7. If C is a \downarrow -finite small n-category with $\operatorname{wd}_{\mathbf{C}}\Delta^*Z = k$, then $\operatorname{hd}_{\mathbf{C}^{\mathrm{OP}}}\Delta^*Z \leq n+1+k$.

This follows from Lemma 3.1.

Lastly, putting Corollary 3.3 and Corollary 3.7 together, we can drop the hypothesis of Corollary 3.7 that $\mathfrak A$ have enough projectives.

Theorem 3.9. If \mathfrak{A} is an AB4 category and \mathfrak{C} is a \mathfrak{l} -finite small n-category with $\operatorname{wd}_{\mathfrak{C}}\Delta^*Z = k$, then L, $\operatorname{colim}_{\mathfrak{C}}: \mathfrak{A}^{\mathfrak{C}} \to \mathfrak{A}$ vanishes for r > n+1+k.

BIBLIOGRAPHY

- 1. M. André, Limites et fibrés, C. R. Acad. Sci. Paris 260 (1965), 756-759. MR 31 #221.
- 2. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119-221. MR 21 #1328.
- 3. ——, Technique de descente et théorèmes d'existence en géométrie algébrique. II. Le théorème d'existence en théorie formelle des modules, Séminaire Bourbaki, 12e année 1959/60, fasc. 2, exposé 195, Secrétariat mathématique, Paris, 1960. MR 23 #A2273.
- 4. P. Hilton, On the category of direct systems and functors on groups, J. Pure Appl. Algebra 1 (1971), no. 1, 1-26. MR 44 #1712.
 - 5. D. Latch, On derived functors of limit, Thesis, CUNY, 1971.
- 6. O. A. Laudal, Sur les limites projectives et inductives, Ann. Sci. École. Norm. Sup. (3) 82 (1965), 241-296. MR 34 #225.
- 7. J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337-341. MR 28 #2544.
- 8. B. Mitchell, *Theory of categories*, Pure and Appl. Math., vol. 17, Academic Press, New York, 1965. MR 34 #2647.
 - 9. ____, Rings with several objects, Advances in Math. 8 (1972), 1-161.
 - 10. ____, The cohomological dimension of a directed set, Canad. J. Math. (to appear).
- 11. G. Nobeling, Über die Derivierten des inversen und des direkten Limes einen Modulfamilie, Topology 1 (1962), 47-61. MR 25 #2109.
- 12. U. Oberst, Homology of categories and exactness of direct limit, Math. Z. 107 (1968), 87-115. MR 39 #5662.
- 13. B. L. Osofsky, Upper bounds on homological dimensions, Nagoya Math. J. 32 (1968), 315-322. MR 38 #1128.
- 14. J. E. Roos, Sur les foncteurs dérivés de Lim. Applications, C. R. Acad. Sci. Paris 252 (1961), 3702-3704. MR 24 #A1938.
- 15. H. B. Stauffer, Derived functors without injectives, Category Theory, Homology Theory and their Applications. I, Lecture Notes in Math., vol. 86, Springer-Verlag, Berlin, 1969, pp. 159-166. MR 39 #4250.
- 16. ———, The completion of an abelian category, Trans. Amer. Math. Soc. 140 (1972), 403-414.
 - 17. Zuei-Zong Yeh, Thesis, Princeton University, Princeton, N. J., 1959.

DEPARTMENT OF MATHEMATICS, DOUGLASS COLLEGE, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903